I am a Research Scientist in Generative AI at NVIDIA’s Deep Imagination Research Team. I completed my PhD (cum laude) in Efficient Deep Learning at the Vrije Universiteit Amsterdam. I also have spent time at Mitsubishi Electric Research Laboratories, Qualcomm AI Research and Google Research.
My research interests include all aspects of efficiency in Deep Learning, such as data efficiency, computational efficiency, and parameter efficiency. I am primarily interested in continuous parameterizations and relaxations of neural components and their use to improve efficiency aspects of Deep Learning. For example, Continuous Kernel Convolutions (CKConvs) can model long context with low parameter and time costs. Extensions of CKConvs have found application in modeling context that extends to millions of tokens [ 1, 2].
In my free time, I enjoy learning new things, such as coffee making and carpentry, and doing sports, e.g., fitness, basketball.
PhD. Efficient Deep Learning (cum laude), 2024
Vrije Universiteit Amsterdam
MSc. Computational Engineering, 2018
Technische Universität Berlin
BSc. Mechatronic Engineering, 2016
Universidad Nacional de Colombia